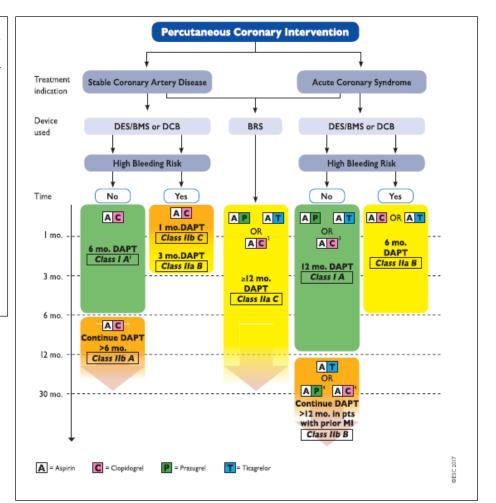
Ultra-short DAPT: Are All Stents Equal?

Soon Jun Hong, MD

Korea University Anam Hospital

I have nothing to disclose !

Current DAPT Guideline


European Society of Cardiology doi:10.1093/eurhearti/ehx419 **ESC GUIDELINES**

2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS

The Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS)

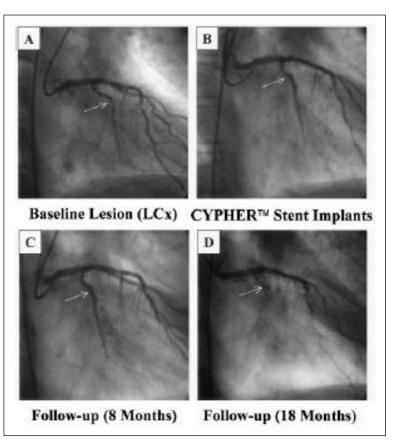
Authors/Task Force Members: Marco Valgimigli* (Chairperson) (Switzerland), Héctor Bueno (Spain), Robert A. Byrne (Germany), Jean-Philippe Collet (France), Francesco Costa (Italy), Anders Jeppsson¹ (Sweden), Peter Jüni (Canada), Adnan Kastrati (Germany), Philippe Kolh (Belgium), Laura Mauri (USA), Gilles Montalescot (France), Franz-Josef Neumann (Germany), Mate Petricevic¹ (Croatia), Marco Roffi (Switzerland), Philippe Gabriel Steg (France), Stephan Windecker (Switzerland), and Jose Luis Zamorano (Spain)

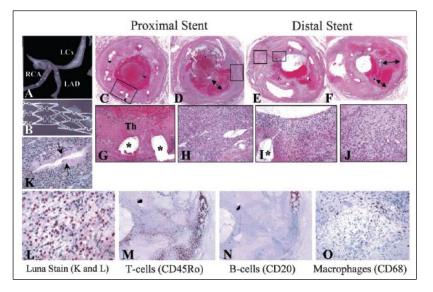
- The level of evidence for shortening DAPT regimens in the current practice guidelines is weak.
- However, many companies are trying to shortened DAPT.

- FDA requires a design rationale that serves as a logic why a shortened DAPT regimen would be safe.
- Let's first review the design elements of the BioFreedom[™] stent under the specific aspect of safety for an abbreviated <u>1-month DAPT regimen</u>.

Polymers May Cause Localized Hypersensitivity

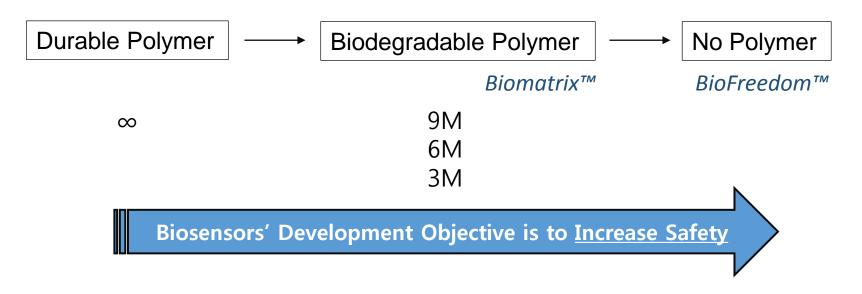
Clinical Investigation and Reports


Localized Hypersensitivity and Late Coronary Thrombosis Secondary to a Sirolimus-Eluting Stent


Should We Be Cautious?

Renu Virmani, MD; Giulio Guagliumi, MD; Andrew Farb, MD; Giuseppe Musumeci, MD; Niccolo Grieco, MD; Teresio Motta, MD; Laurian Mihalcsik, MD; Maurizio Tespili, MD; Orazio Valsecchi, MD; Frank D. Kolodgie, PhD

Circulation. 2004; 109:701-705

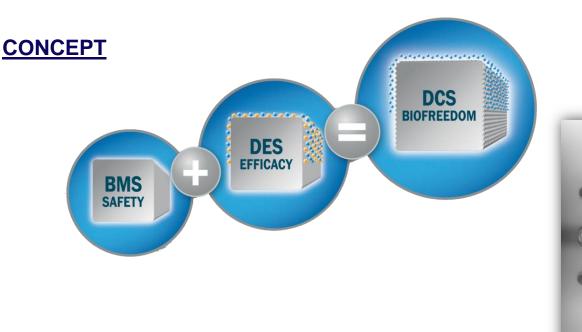

Discussion

This is the first case of a localized hypersensitivity vasculitis in response to a Cypher coronary stent resulting in an acute myocardial infarction secondary to late in-stent thrombosis at 18 months. The hypersensitivity reaction could be caused by the metallic stent, polymer, or sirolimus. Available pathological evidence, however, supports the hypothesis that <u>hypersensitivity to the polymer is the most likely mechanism</u>

- First pathology report on <u>a localized</u> <u>hyper-sensitivity vasculitis</u> after Cypher[™] stent implantation.
- Most likely caused by hypersensitivity to <u>the methyl-acrylate polymer</u>

Is the Polymer Needed ?

Presence of the polymer may require protection through DAPT, at least early after implantation.



- Due to the time course of the arterial response to injury, exposure to the vessel wall to <u>an anti-proliferative drug</u> is needed for a period of approx. 90 days (3M) to prevent neointimal proliferation.
- The purpose of a polymer is to modulate the drug release to match this 90 day requirement.
- How can <u>a polymer-free stent</u> be effective in restenosis prevention?

Critical Design Elements of BioFreedom™

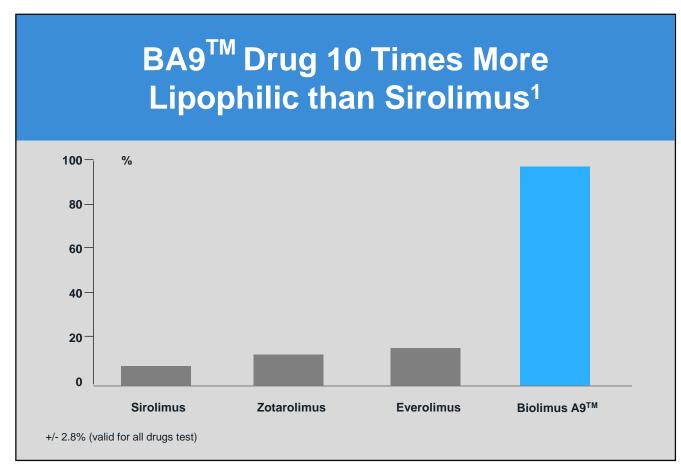
- No Polymer
- Selectively modified abluminal surface
- Hyper-lipophilic Drug (BA-9)

The BioFreedom[™] Drug-Coated Stent

- Polymer-free drug delivery to lesion site
- Process of making selectively micro-structured surface on the stent abluminal side

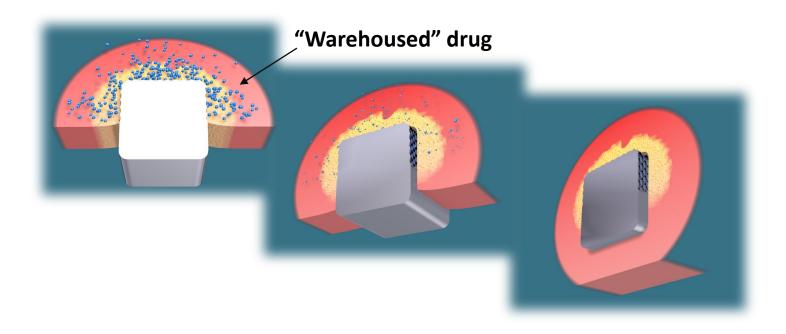
Selectively Modified Abluminal Surface

Selectively <u>Microstructured</u> <u>Abluminal</u> Surface

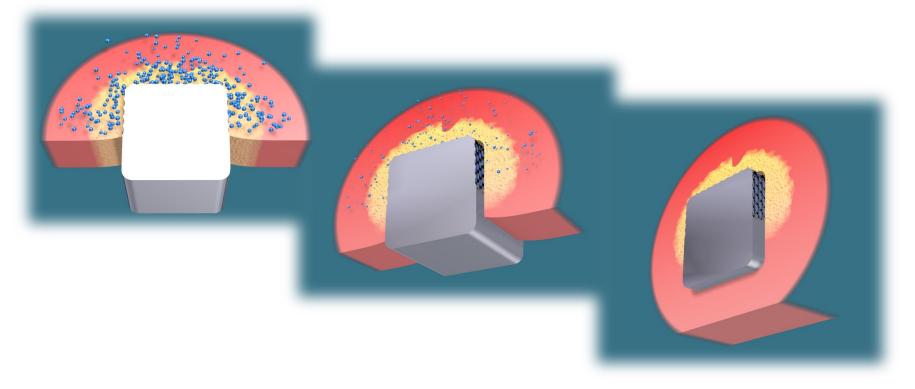

luminal

Smooth Luminal Surface

After about 28 days, when approx. 98% of the drug has been transferred to the vessel wall, the BioFreedom becomes <u>a bare metal</u> <u>stent.¹</u>


BA-9 is a Hyper-Lipophilic Anti-Proliferative Drug

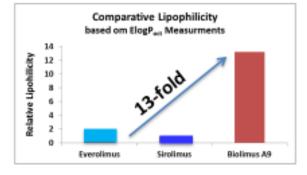
- The high lipophilicity of the BA-9 drug allows for sustained "warehousing" in the vessel wall after drug transfer, long enough to cover the initial 90-day period.
- The polymer-free design would likely not result in a restenosis with a lipophilic BA-9.


The Concept of Local Tissue Drug "Warehousing"

 Instead of being slowly released from a polymer, the drug is <u>transferred fast</u> (<28 days) and <u>locally</u> <u>stored</u> in the adjacent vessel wall tissue.

Purpose of Selectively Micro-structured Surface

- Increase surface area to physically contain drug
- <u>Minimize drug loss</u> during navigation to target lesion site
- <u>Target drug delivery</u> towards vessel wall

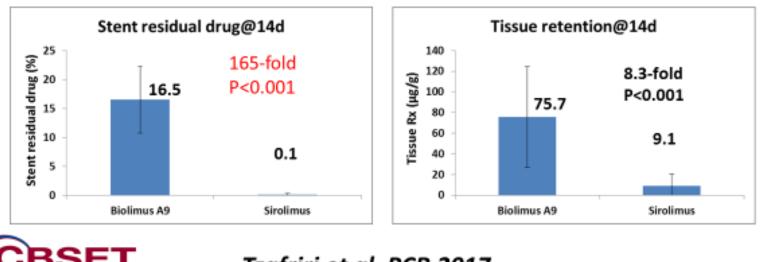


Polymer-free Design: BA-9 vs. Sirolimus

Hypothesis: drug lipophilicity dictates PF DCS release & tissue retention

 Biolimus A9 (BA9) is a highly lipophilic Sirolimus analog specifically designed for local-drug delivery.

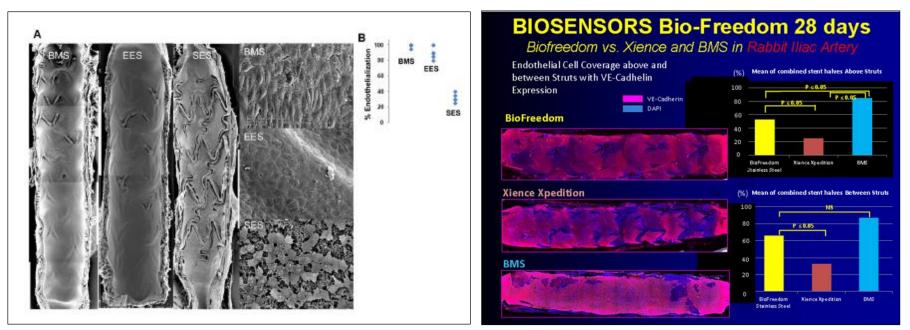
 To control lipophilicity we contrasted BA9 and Sirolimus PF DCS stents (Biosensors International) coated with the same drug load (225µg) via the same abluminal surface texturing and spray coating processes of BioFlex II stents.


Pre-Clinical Work Verified BA-9 Retention

Lipophilicity dictated bulk release and tissue retention in rabbit arteries

 Biolimus sirolimus PF DCS were implanted into illiofemoral arteries of 11 NWZ rabbits.

∞ euro


 Drug content was quantified by LC/MS/MS in arteries and stents at sacrifice (@14d).

Tzafriri et al, PCR 2017

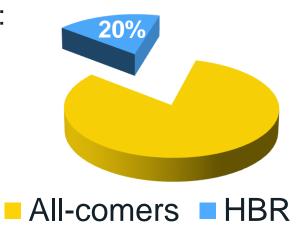
Rabbit Iliac Model – Endothelial Coverage

Rabbit Iliac Stent Model with SEM imaging at 14 days

Circ Cardiovasc Interv. 2014; 7:526-532

- In the rabbit iliac model, BioFreedom stents were covered with endothelial tissue at 14 days, at <u>a level similar to bare-metal stents</u>.
- This finding suggests that a DAPT period of 1 month, which has been the standard for BMS, can be considered once needed for <u>high bleeding risk patients</u>.

The NEW ENGLAND JOURNAL of MEDICINE NENGLJ MED 373;21 NEJM.ORG NOVEMBER 19, 2015


ORIGINAL ARTICLE

Polymer-free Drug-Coated Coronary Stents in Patients at High Bleeding Risk

Philip Urban, M.D., Ian T. Meredith, M.B., B.S., Ph.D., Alexandre Abizaid, M.D., Ph.D., Stuart J. Pocock, Ph.D., Didier Carrié, M.D., Ph.D., Christoph Naber, M.D., Ph.D., Janusz Lipiecki, M.D., Ph.D., Gert Richardt, M.D., Andres Iñiguez, M.D., Ph.D., Philippe Brunel, M.D., Mariano Valdes-Chavarri, M.D., Ph.D., Philippe Garot, M.D., Suneel Talwar, M.B., B.S., M.D., Jacques Berland, M.D., Mohamed Abdellaoui, M.D., Franz Eberli, M.D., Keith Oldroyd, M.B., Ch.B., M.D., Robaayah Zambahari, M.B., B.S., M.D., John Gregson, Ph.D., Samantha Greene, B.A., Hans-Peter Stoll, M.D., and Marie-Claude Morice, M.D., for the LEADERS FREE Investigators*

High Bleeding Risk Patients (HBR)

- <u>Mostly excluded</u> from device and APT trials
- Never specifically studied
- Current guideline recommendations:
 - · BMS → one month DAPT
 - · DES → "shortened" DAPT

LEADERS FREE Trial Design

Prospective, double-blind randomized (1:1) trial 2466 High bleeding risk (HBR) PCI patients

DAPT mandated for 1 month only, followed by long-term SAPT

Primary safety endpoint:

Composite of <u>cardiac death</u>, MI, <u>definite</u> / <u>probable stent thrombosis</u> at 1 year (non-inferiority then superiority)

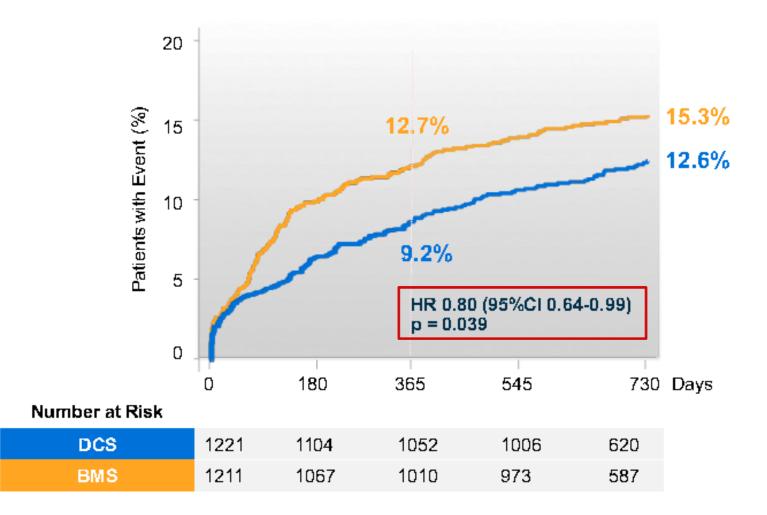
 Primary efficacy endpoint: <u>Clinically-driven TLR</u> at 1 year (superiority)

Inclusion Criteria Applied (1.7 criteria / patient)


BMS (N=1211) DCS (N=1221)

64.1 64.5 Age ≥ 75 35.6 36.7 Oral anticoagulation after PCI 20.2 Creat. Clearance < 40 ml/min 7.9 7.4 Major surgery in the next year 5.3 16 Hb < 11g/dl or TF < 4 weeks15.2 9.9 9.7 Cancer in previous 3 years In hospital for bleeding < 1 year 38 3.9 3.4 Nonadherence to > 30d DAPT <mark>2.8</mark> 3.1 Glucocorticoids or NSAID ‡ **1.5 1.6** Thrombocytopenia* Stroke < 1 yr 2 **0.8 0.9** Severe chronic liver disease 1.6 Prior intracerebral bleed % 0 10 20 30 40 50 60 70

Primary Endpoints at 1 year

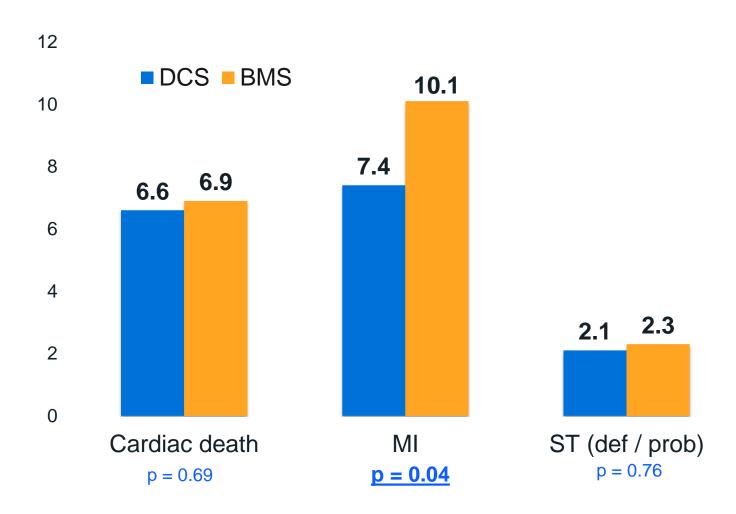


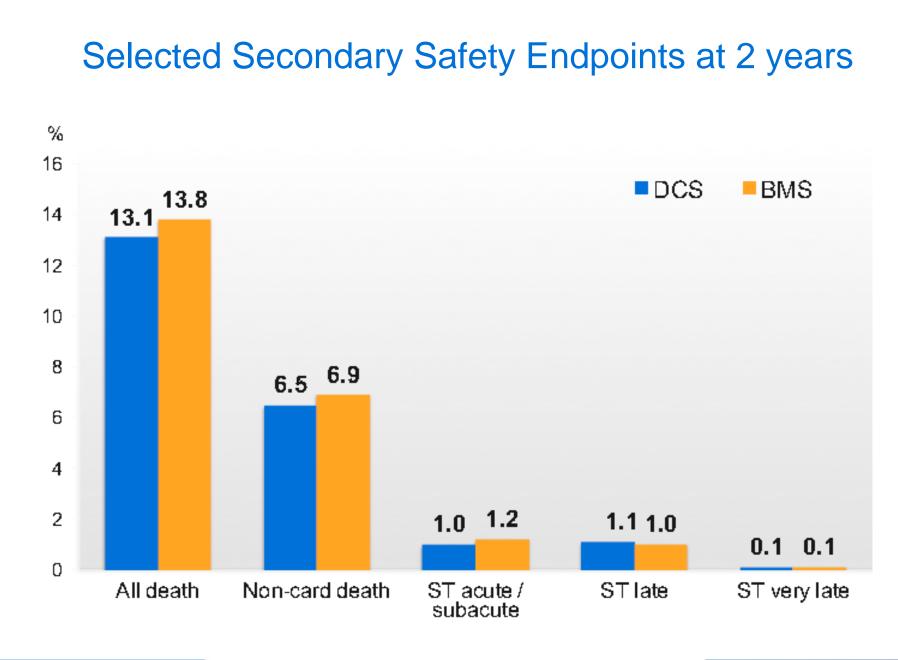
<u>Two-Year Outcomes</u> of High Bleeding Risk Patients after Polymer-Free Drug-Coated Stents

Philip Urban, Philippe Garot, Damras Tresukosol, Stuart J. Pocock, Ian Meredith, Alex Abizaid, Didier Carrié, Christoph Naber, Andes Iñiguez, Suneel Talwar, Ian B.A. Menown, Evald H. Christensen, Samuel Copt, John Gregson, Hans-Peter Stoll,Samantha Greene, and Marie-Claude Morice for the LEADERS FREE Investigators

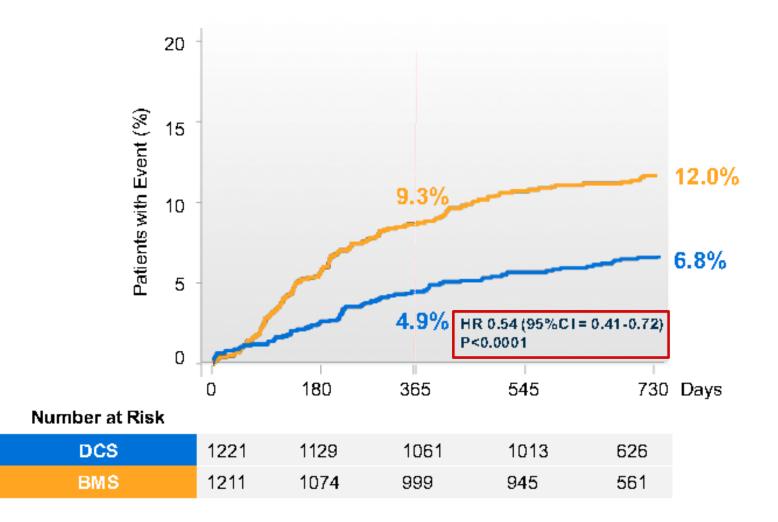
Presented by P Urban TCT 30th Oct 2016

Primary Safety Endpoint (Cardiac Death, MI, ST) at 2 years




2 year FU was obtained at 730 days +60 days

Components of Safety Endpoint at 2 years



BIOFREEDCM

Primary Efficacy Endpoint (Clinically-Driven TLR) at 2 years

LEADERSFREEI

Pivotal Study of the Biolimus A9[™] Drug-Coated Stent in High Bleeding Risk Patients: Primary Report

Presented in TCT 2018 on behalf of Philip Urban (EU-PI), Study Leadership and the LEADERS FREE II Investigators

LEADERS FREE II Study Pivotal Trial Supporting U.S. Device Registration Decision

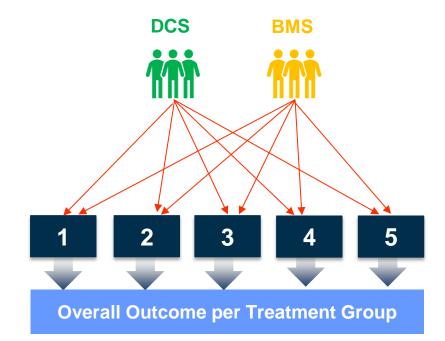
Reproducibility of LEADERS FREE findings

- Safety of DCS with 30 day DAPT in HBR patients
- Effectiveness of DCS with 30 day DAPT in HBR patients

Generalizability of LEADERS FREE findings

North American patients and clinical practice

Single arm design:

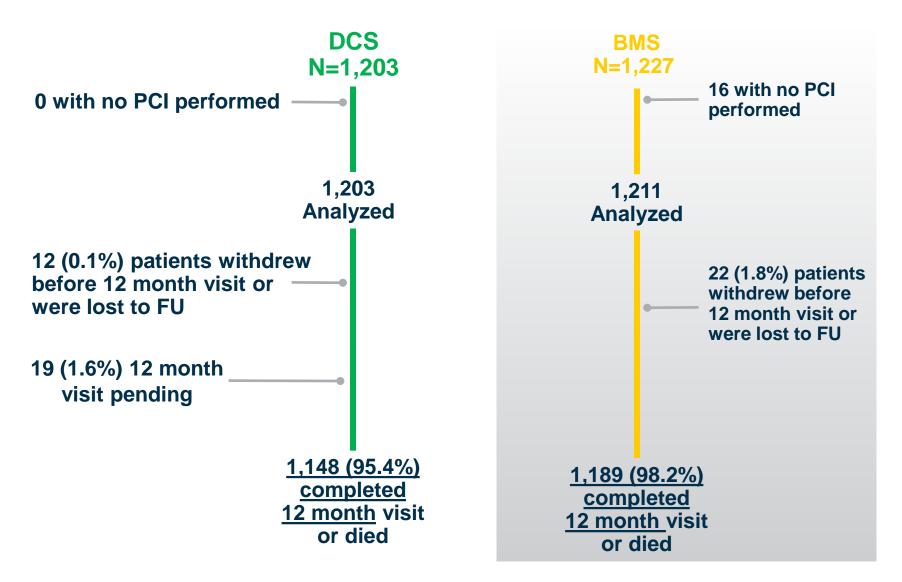

No equipoise for BMS randomization

LEADERS FREE II Statistical Analysis Plan

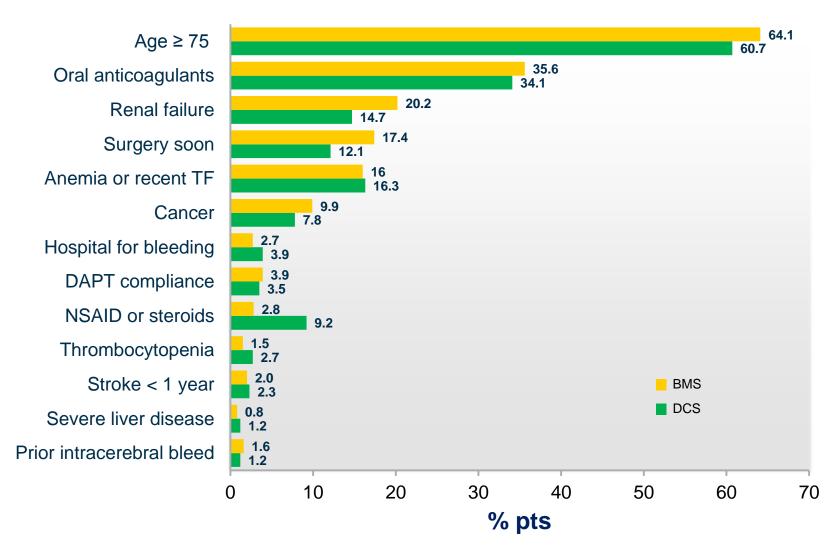
- Controls: Leaders Free BMS patients (n=1,189)
- Primary Safety Endpoint: Composite of cardiac death and MI at 1 year (non-inferiority then superiority)
- Primary Efficacy Endpoint: Clinically-driven TLR at 1 year (superiority)

Propensity Analysis:

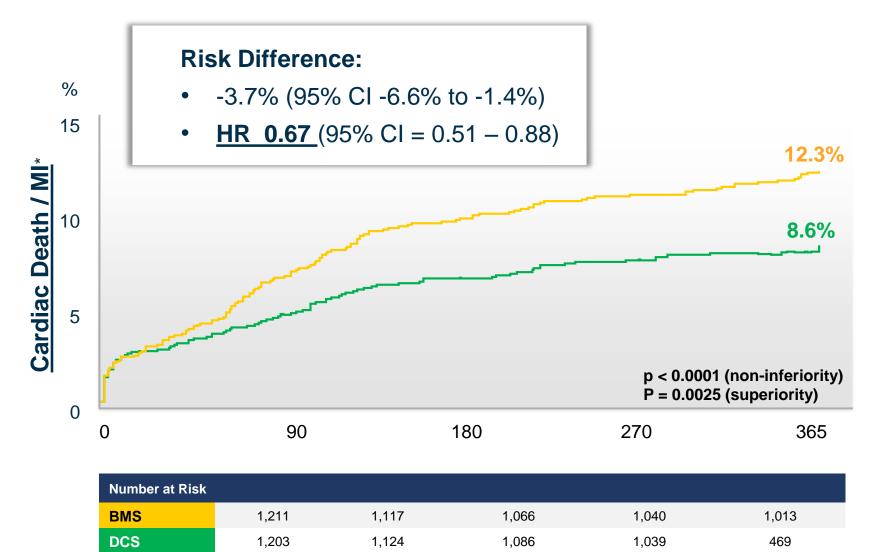
- 40 baseline variable propensity profile
- 5 strata (quintiles)
 - Compute Primary Endpoint per treatment within quintile
 - Average treatment effect over quintiles



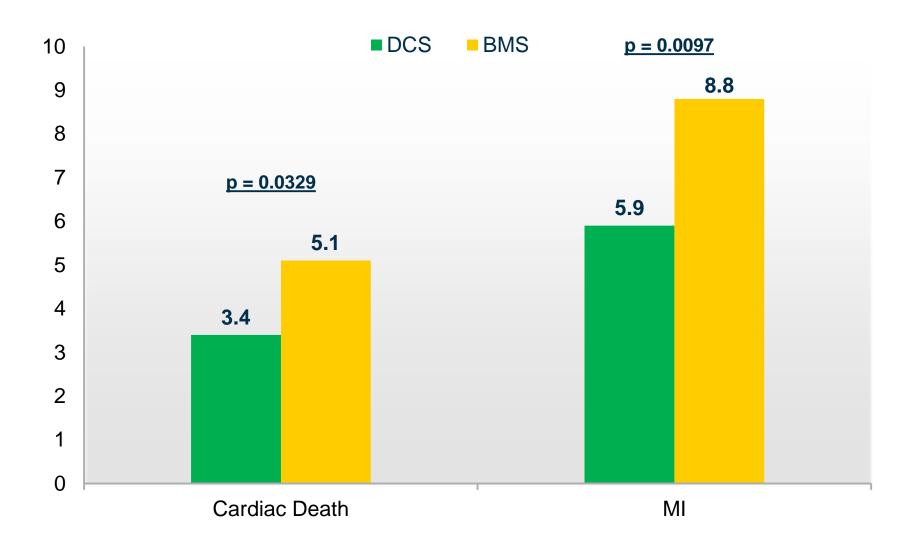
Clinical Trial Operations

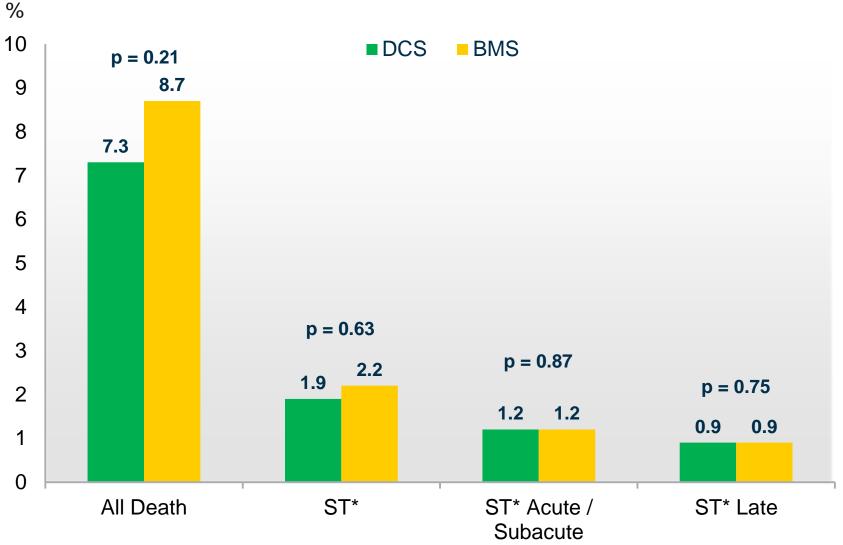

Optimizing single arm design in the absence of randomization

- Identical inclusion / exclusion criteria
- Identical case report forms
- Identical angiographic core laboratory
- Identical CEC adjudication processes and committee
- Identical outcome endpoints
- Overlap of European sites


Enrollment: LFII and LF Controls

Inclusion Criteria Applied (1.74 criteria / patient)

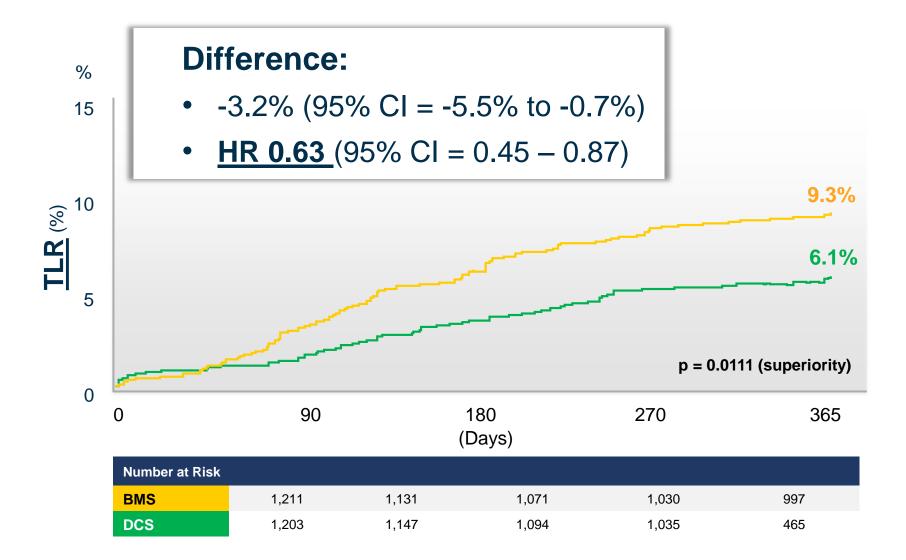

Primary Safety Endpoint


*3rd Universal definition of MI, Thygesen K et al Circulation 2012;126:2020 –2035.

Components of Safety Endpoint

%

Selected Secondary Safety Endpoints



*ARC definite / probable.

Subgroups: Composite Safety Endpoint (Cardiac Death, MI)

tegory		N	DCS: Events (%)	BMS: Events (%)		P-value fo Interactio
Age >80	No Yes	1658 756	69 (8) 31 (10)	87 (11) 61 (15)		0.40
Female	No Yes	1663 751	72 (9) 28 (8)	98 (12) 50 (14)		0.25
ACS at admission	No yes	1348 1066	47 (7) 53 (10)	68 (10) 80 (16)		0.59
Diabetes	No Yes	1609 805	48 (6) 52 (13)	88 (11) 60 (16)		0.15
Renal failure at admission	No Yes	1992 422	78 (8) 22 (14)	97 (10) 51 (21)		0.35
Planed OAC at randomization	No Yes	1573 841	70 (9) 30 (7)	98 (13) 50 (12)		0.66
Crusade score > median (35)	No Yes	1396 1018	46 (7) 54 (11)	63 (9) 85 (18)		0.20
Anemia, transfusion / bleeding leading to hospitalization	No Yes	1977 437	74 (8) 26 (12)	108 (11) 40 (20)		0.50
Planned major surgery in following year	No yes	2005 387	87 (9) 12 (7)	124 (13) 24 (11)	_	0.70
Cancer in last 3 years	No yes	2181 231	90 (9) 10 (9)	133 (12) 15 (13)		0.86
Multi-vessel disease at admission	No yes	770 1644	10 (3) 90 (10)	40 (9) 108 (15)		0.17
Total stent length > 30 mm	No Yes	1384 1030	42 (7) 58 (11)	66 (9) 82 (17)		0.72
Minimal stent diameter < 3 mm	No Yes	1183 1226	47 (9) 53 (9)	58 (10) 90 (15)		0.14

Primary Efficacy Endpoint

Subgroups Continued Efficacy Endpoint (Clinically-driven TLR)

	N DO	CS: Events (%)	BMS: Events (%)		P-value for Interaction
		51 (6) 16 (5)	67 (9) 40 (10)	8	- 0.22
		46 (6) 21 (7)	75 (9) 32 (9)	₽	0.94
		33 (5) 34 (7)	66 (10) 41 (8)	₽	0.18
-		33 (5) 34 (9)	70 (9) 37 (10)		0.07
		54 (6) 13 (9)	93 (10) 14 (6)	e	0.05
-		49 (7)	75 (10)	_	0.77
-		35 (5) 32 (7)	69 (10) 38 (8)	e	0.32
		55 (6) 12 (6)	91 (9) 16 (8)		0.86
		59 (6) 7 (4)	86 (9) – 21 (10) –		0.26
		63 (6) 4 (4)	96 (9)		0.42
-	-	7 (2) 60 (7)	28 (6) 79 (11)		0.36
No 1:		23 (4) 44 (9)	48 (7) 59 (13)	_	0.49
No 1	183	23 (4) 44 (8)	41 (7) 66 (11)		0.82
	No 16 Yes 7 No 12 Yes 7 No 13 yes 10 Yes 4 No 15 Yes 4 No 20 Yes 4 No 20 Yes 4 No 20 Yes 3 No 21 Yes 16 No 17 Yes 16	No 1658 Yes 756 No 1163 Yes 751 No 1348 yes 1066 No 1609 Yes 805 No 1992 Yes 422 No 1573 Yes 841 No 1396 Yes 1018 No 1977 Yes 437 No 2005 yes 231 No 770 yes 1644 No 1384 Yes 1030 No 1183	No165851(6)Yes75616(5)No116346(6)Yes75121(7)No134833(5)yes106634(7)No160933(5)Yes80534(9)No199254(6)Yes42213(9)No157349(7)Yes84118(5)No139635(5)Yes101832(7)No197755(6)Yes43712(6)No200559(6)yes3877(4)No218163(6)yes2314(4)No7707(2)yes164460(7)No138423(4)Yes103044No118323Yes118323	No165851(6) 67 (9)Yes75616(5)40(10)No116346(6)75(9)Yes75121(7)32(9)No134833(5)66(10)yes106634(7)41(8)No160933(5)70(9)Yes80534(9)37(10)No199254(6)93(10)Yes42213(9)14(6)No157349(7)75(10)Yes84118(5)32(8)No139635(5)69(10)Yes101832(7)38(8)No197755(6)91(9)Yes43712(6)16(8)No200559(6)86(9)yes2314(4)11(10)No7707(2)28(6)yes164460(7)79(11)No138423(4)48(7)Yes103044(9)59(13)No118323(4)41(7)	No 1658 51 66 67 9 Yes 756 16 5 40 10

Summary

- Dedicated design elements of the BioFreedom[™] stent such as the absence of a polymer matrix together with <u>a highly-lipophilic drug</u> constitute a design rationale for <u>shortening DAPT to 1M</u>.
- By 1M, 98% of the drug content has been transferred leaving <u>a BMS-like implant</u> behind.
- The absence of a polymer leads to <u>rapid healing</u> and <u>avoids</u> <u>detrimental effects</u> such as hypersensitivity and local inflammation.
- Endothelialization is not delayed and similar to BMS in animal models
- Design elements of the BioFreedom[™] stent lead to the <u>safety</u> of a BMS with the <u>efficacy</u> of a DES.

Conclusions

- At 2 years, the use of a BA9-DCS remained both significantly safer and more effective than a control BMS in HBR patients treated with one-month only DAPT
- No subgroup was identified for which use of a BMS was superior to a DCS
- ✓ From LEADERS FREE II trial,
 - Designed to support essential registration decision for polymerfree Biolimus A9[™] coated stent in North America
 - Demonstrated reproducibility of Leaders Free findings of superior safety (1 year death, MI) and <u>efficacy</u> (1 year TLR) vs. BMS

Thank You !